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On the relation between tensor and vector approaches of
nematodynamics

by MASAHIRO NAKAGAWA*
Division of Information System Engineering, Department of Electrical

Engineering, Faculty of Engineering, Nagaoka University of Technology,
Kamitomioka 1603-1, Nagaoka, Niigata 940-21, Japan

(Received 27 March 1997; accepted 12 June 1997)

In this paper the relationship between tensorial and vector approaches for elastodynamics is
examined in the framework of continuum theory of nematics. It will be elucidated that the
Lagrange multipliers are required in the tensorial framework as well as the vector framework
to assure equivalence between them. A contraction for the tensorial indices in the time-
dependent Ginzburg± Landau equation will be found eventually to result in the vector form
concerned with the Ericksen± Leslie equation without ¯ ow dynamics.

1. Introduction the form of
Up to now, elastic properties of nematics have been

clari® ed extensively based on the continuum framework Fe=
1

2
�

i,j,k,m,n,p
Kijkmnp(a, b, c)Qij,kQmn,p

originated from Oseen± Zocher± Frank [1± 3] theory with
the director ni such that nini=1 and from the Landau± + �

i,j,k
Dijk(a, b, c)Qij,k , (2)

de Gennes phenomenological theory with the tensor order
parameter Qij such that Tr{Q}=Qii=0 and Qij=Qji

where Kijkmnp (a, b, c) and Dijk (a, b, c) are the tensorial[4, 5]. The former vector approach has been involved
coe� cients, which satisfy symmetry of the system andin the hydrodynamic theory of nematics which is well
are to be related to the orthonormal triad basis, orknown as Ericksen± Leslie theory [6, 7]; the latter
a Õ b Õ c, and also implicitly involve dij and eijk [10± 13].tensorial approach has been formulated later to involve
The author’s expression for the biaxial cholestericsthe hydrodynamics [4, 8]. In spite of the successful
was eventually found to be equivalent to the vectorapplications of these two approaches to a number of
expressions by Brand and Pleiner [14] and also bepractical problems, the theoretical equivalence or relation-
Govers and Vertogen [15] in the vector formulation.ship between them has not been reported to date even
This fact implies that the tensorial expansion accordingfor the simple case without ¯ ow e� ect. In principle,
to equation (2) and the vector approach to derive thehowever, these two approaches have to be related to
elastic free energy are substantially equivalent to eacheach other in terms of the following explicit expression
other with the relation between the tensor order parameterfor the tensor order parameter
and the triad as equation (1). In the tensorial approach
for uniaxial nematics, a third-order contribution such

Qij=
3

2
SAaiaj Õ

dij

3 B+
B

2
(bibj Õ cicj), (1) that Q qQ qQ in the tensor order parameter Qij was

given by Berreman and Meiboom [16] to break the
where S and B are the microscopic order parameters degeneracy between the splay and bend elastic constants
related to the uniaxial and biaxial orderings of the as seen in the original Landau± de Gennes expansion of
molecules [9], and the orthonormal triad vector set the free energy, in which Kijkmnp (a, b, c) and Dijk (a, b, c)
a Õ b Õ c with a=n, or the director, is assumed hereafter are expanded only in terms of dij (Kronecker’s d-function)
to be the right-handed triad. Recently the present and eijk (Levi± Civita pseudo-tensor).
author reported a general expansion approach to derive In a somewhat general approach, the equivalence
systematically the elastic free energy expressions of between the Frank elastic free energy expression and the
biaxial cholesterics [10] and biaxial smectics [11] in tensorial form of the uniaxial nematic phase has been

® rst clari® ed within the second-order expansion of the
free energy in terms of the ® rst-order spatial derivative
of the tensor order parameter, Qij,k , as well as the*Author for correspondence.
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562 M. Nakagawa

orthogonal triad, a Õ b Õ c [10± 13], in order to con- contribution as Q qQ qQ. From this point, equation (2)
or equation (4) may be regarded as a generalized second-struct the elastic free energy as an invariant scalar. That

is, there exist three independent elastic terms even in order expansion of the elastic free energy in comparison
with previous proposals in which Kijkmnp (a, b, c) andthe tensorial approach in contrast to the de Gennes

pioneering approach [4], in which only two elastic Dijk (a, b, c) have been assumed to be expanded only in
terms of dij and eijk instead of the orthogonal basisconstants in the splay, twist, and bend elastic terms have

been found to be independent of each other within the a Õ b Õ c in general. Also equation (4) implies that the
tensorial and the vector expressions up to the second-second-order expansion of the elastic free energy in

terms of Qij,k . In fact if Kijkmnp (a, b, c) and Dijk (a, b, c) order expansion of Qij,k have to be equivalent to each
other if one starts with the general expansion aswere expanded only in terms of dij and eijk , one may

encounter this degeneracy between the splay and the equation (2). Even from the viewpoint of the dynamics
without any ¯ ow e� ect, the equivalence between the above-bend elastic constants.

Assuming a uniaxial cholesteric phase with B=0, i.e. mentioned two streams for the continuum theoretical
approaches have not yet been clari® ed.the tensor order parameter and its spatial derivatives

read In this work the mathematical relation between the
tensorial and the vector approaches within the frame-
work of the time-dependent Ginzburg± Landau (TDGL)Qij=

3

2
SAaiaj Õ

dij

3 B , (3 a)
equation is mentioned, with certain restrictions which
are accompanied with certain Lagrange multipliers. Inand
§2, the theoretical framework will be mentioned brie¯ y;
then §3 and § 4 are devoted to some discussion andQij,k=

3

2
S(aiaj ),k=

3

2
S(ai,kaj+aiaj,k), (3 b)

conclusions, respectively.

respectively, where S is the microscopic order parameter
2. Theory

related to the molecular ordering along n=a and
In this section let us show the relationship betweenassumed to be constant in the isothermal equilibrium

the tensorial and vector approaches restricting our-system under consideration, the explicit form can be
selves to the time-dependent Ginzburg± Landau (TDGL)given by (see Appendix)
equations.

2F=L 1{(bkQij,kaibj)+ (ckQij,kaicj)}2
First of all we have to note the following relation.

+L 2{(bkQij,kaicj ) Õ (ckQij,kaibj )}2
ni,j=nk (nink ),j=nkaik,j , (6)

+L 3{(akQij,kaibj)
2+ (akQij,kaicj)

2} where the tensor aij is de® ned by

+2L 2q{(bkQij,kaicj) Õ (ckQij,kaibj)} aij=ninj , (7)
=K1 (ni,i)

2+K2 (nieijknk,j)
2+K3njni,jnkni,k or related to Qij in terms of

+2K2qnieijknk,j , (4)
Qij=

3

2
SAaij Õ

dij

3 B , (8)
where q is the chiral constant concerned with the natural
full pitch P in terms of q=2p/P, and Ki and L i are to

where S is a proportionality constant correspondingbe related to each other in terms of
to the microscopic molecular ordering. In our con-
sideration, however, S is assumed hereafter to be only aKi=

9

4
S2L i (5)

non-vanishing constant.
Noting equation (7), one ® nds the following identities.

(i=1, 2, 3 or splay, twist, bend). Here equation (4) is
(ni,i)

2= (dijni,j)
2= (dij nkaik,j)

2=nknmaik,iajm,jconsidered to be a general expansion given by equation (2)
and may resemble the Berreman and Meiboom approach =akmaik,iajm,j=aknamnaik,iajm,j , (9 a)
[16]. In practice, however, since the present expression

(eijknink,j)
2=(eijk ninmamk,j)

2 = (eijk aimamk,j)
2, (9 b)equation (4) with an orthogonal basis a Õ b Õ c in the

tensorial coe� cients Kijkmnp (a, b, c) and Dijk (a, b, c) is njni,jnkni,k=ajmami,jaknani,k=ajmaknami,jani,k , (9 c)
within the second-order in Qij,k , the resultant elastic

where we note the relationscoe� cients, Ki (i=splay, twist, bend), are also quadratic
in S as seen in equation (5). In the Berreman and

aii=nini=1, (10)
Meiboom approach [16], however, the third-order
elastic term in S is involved as a result of the third-order aijajk=aik . (11)
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563Relation between tensor/vector approaches

Then the elastic free energy of uniaxial cholesterics can Now let us de® ne the following functional.
be derived in terms of ni,j or aij,k

PÃ a{aij , aij,k}=PV
dr Pa{aij , aij,k}, (18)

2Fe=K1 (ni,i)
2+K2(nieijk nk,j)

2+K3njni,jnkni,k

Pa{aij , aij,k}=F Õ n0Tr{a}+2K2qnieijk nk,j

=K1(aknamnaki,iamj,j)+K2 (eijk aimamk,j)
2

Õ �
LÕ 1

p=1

1
p+1

n*
p Tr{ap+1}

+K3ajmami,jaknani,k+2K2qeijkaimamk,j . (12)
Õ mij(aij Õ aji), (19)

If we replace aij,k herein in terms of Qij,k noting that
where n0 , n*

p (1 < p < L Õ 1 ), and mij (1 < i, j < 3 ) areS=constant, one has an equivalent expression of the
the Lagrange multipliers related to the previouslysame elastic free energy expression as that previously
mentioned constraints on aij as shown in equations (15)presented by equation (4). Under an electric ® eld Ei, the
to (17). From the last term in the right-hand side ofcoupling energy can be simply expressed in terms of
equation (19), one has to note that mij is to be an
antisymmetric tensor with three independent com-

FE=Õ
1

2
eaninjEiEj=Õ

1

2
eaaimajmEiEj , (13) ponents without loss of generality. Therefore the

constraints, equations (15) to (17), substantially a� ect
the resultant model to describe the tensor ® eld aij .where we noted equations (7) and (11). Especially, for

Then the TDGL equation for the tensorial formulationK1=K2=K3=K, equation (12) can be reduced to
reads

2Fe=K(ni,i)
2+K(ni,jni,j Õ ni,jnj,i)+2Kqnieijknk,j

ca
qaij

qt
=Õ

dPÃ a

daij
=Õ

DPa

Daij
=Kni,jni,j+2Kqnieijknk,j+K(nj,jni Õ ni,jnj ),i

=Kni,jni,j+2Kqnieijknk,j+surface term
=Õ

dFÃ

daij
+n0dij+ �

LÕ 1

p=1
n*
p ap

ij+ (mij Õ mji)=Kakmaik,jaim,j+2Kqeijkaimakm,j+surface term

=
1

2
Kaij,kaij,k+2Kqeijk aimakm,j+surface term. =Õ

dFÃ

daij
+n0dij+n1aij+ (mij Õ mji), (20)

where we noted the relations aij=ninj (see equation (7))(14)
and a=a ¯a (see equation (10) ), d ¯/daij and D¯/Daij

According to the relations involved to construct the free mean the functional derivative and the Euler di� erential
energy, equations (7), (10), and (11), the constraints for operation, respectively, ca is a viscosity coe� cient, and
the tensor aij are given by n1 is de® ned by

Tr(a)=aii=1, (15) n1= �
LÕ 1

p=1
n*
p , (21)

Tr(a¯a ¯¯¯¯a)=Tr(ap )=1 (2 < p < L ), (16)
which implies that the constraints expressed by

aij=aji (symmetric). (17) equation (16) for each p are not independent of each
other under aij=ninj and a=a¯a, but they have to be

Equation (15) stands for a constraint for the con- reduced to the constraint for p=2 corresponding to
servation of trace of aij corresponding to equations (7) Tr{a2}=1. Therefore the resultant dynamic equation
and (10). Then equation (16) denotes the constraints becomes identical to that with Tr{a2}=1 instead of
compatible with a¯a=a or equations (7) and (11), equation (16) in so far as aij=ninj is assumed a priori.
which were involved in the present approach to construct Hence, since we have ® ve independent constraints
the free energiesÐ equations (12) and (13). Provided corresponding to n0 , n1 , m12 , m23 , and m31 , there exist 4
that aij=ninj was not included as an a priori assumption, (=9 Õ 5) independent components in the tensor ® eld aij .
then the constraints for each p in equation (16) could Then, in equation (20), FÃ is de® ned as
be independent of each other. In the present approach,
however, the Lagrange multipliers concerned with each FÃ = PV

dr{Fe(aij , aij,k )+FE(Ei , aij)}
p(2 # p # L ) are not independent of each other as will
be shown later, since one assumes aij=ninj , aii=1,
a¯a=a, as illustrated in terms of equations (7), (10), = PV

dr{Fe(ni, ni,j )+FE(Ei, ni)}. (22)
and (11).
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564 M. Nakagawa

then the time-dependent Ginzburg± Landau (TDGL) Now if one takes account of the following identity,
equation (20) leads to

dij=aiaj+bibj+cicj =aij+bibj+cicj , (28)

ca
qaij

qt
=hij+n0dij+n1aij+ (mij Õ mji) (1 < i, j < 3), equation (25 a) can be rewritten as

(23) ca
qaij

qt
=h(ij)+naij+l ij , (29)

where the tensorial molecular ® eld, hij , is de® ned by
where

hij=Õ qF

qaij
+A qF

qaij,kB,k
. (24) n=n0+n1, (30 a)

andHence we have ® ve unknowns, n0 , n1 , m12 , m23 , and m31

corresponding to the constraints, or equations (15) to l ij=n0 (bibj+cicj )=l ji. (30 b)
(17), in the tensor aij with nine components in general.

It should be noted here that naij and l ij may be regardedTherefore only four (=2 Ö 2) components in aij are
as tensor components parallel to aij and orthogonal toindependent of each other which is found to be consistent
it, respectively. From the de® nition of equation (30 b),with such a constraint as aij=ninj , or a=nEn (the
l ij may be regarded as a uniaxially symmetric tensordirect product of n), in which each n has two independent
about ni as a principal axis.components because of n¯n=1. From equation (23),

Now let us determine the unknowns, n0 and n1 , whichnoting that aij=aji , one may readily ® nd
may be certain functions of time, t as well as space, r.
In practice, noting that aij=aji , one may readily deriveca

qaij

qt
=h(ij)+n0dij+n1aij , (25 a)

3n0+n1=Õ h(ii)=Õ hii , (31 a)
0=h[ij]+ (mij Õ mji)=h[ij]+2m[ij]

n0+n1=Õ aijh(ij)=Õ aij hij , (31 b)
=h[ij]+2mij , (25 b)

or
where the e� ective symmetric h(ij) and skew symmetric
molecular ® eld components h[ij] are de® ned by

n0=
1

2
(aij Õ dij )hij , (32 a)

h(ij)=
1

2
(hij+hji), (26 a)

n1=
1

2
(dij Õ 3aij)hij . (32 b)

and
Thus substituting equation (32 a) into equations (30 a)
and (30 b), one ® ndsh[ij]=

1

2
(hij Õ hji), (26 b)

n=n0+n1=Õ aijhij , (33 a)
respectively.Equation (25 a), which involves two unknown
Lagrange multipliers, i.e. n0 and n1 , consists of four l ij=

1

2
(amn Õ dmn)hmn(dij Õ aij ). (33 b)

(=6 Õ 2) independent equations. On the other hand,
equation (25 b) results in the relation to determine three Now we are at the position to derive the vector
unknowns, i.e. m12 , m23 , and m31 . In practice, from expression of the TDGL equation from the tensor
equation (25 b), the unknown antisymmetric tensor expression, equation (25 a). Multiplying nj in both sides
components mij are given by of equation (25 a), one has straightforwardly

mij=Õ
1

2
h[ij]=Õ

1

4
(hij Õ hji). (27) ca

qni

qt
=njh(ij)+nni. (34)

It has to be noted here that the tensor aij remains Then the unknown n can be determined in terms of
symmetric as far as aij is assumed to be symmetric as
an initial condition and mij is given by equation (27). In

n=Õ ninjh(ij)=Õ aijh(ij)=Õ aij hij=aij
dF

daij
, (35)practice if one substitutes equation (27) into equation (23)

and notes equation (26 a), then equation (25 a) can be
easily obtained. which is found to coincide with equation (31 b). From
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565Relation between tensor/vector approaches

equations (12) and (13), equation (24) reads The above relations imply that both hi and hij may be
accompanied with some uncertainties corresponding to
the above-mentioned constraints upon them.hij=G Õ qF

qaij
+A qF

qaij,kB,k H Let us derive the tensorial expression from the vector
expression, or equation (40) below. First of all, to obtain

=KG Õ qeikmamj,k+
1

2
aij,kk+qemkiamj,k H+

1

2
eaEiEj a tensorial expression, multiplying by nj on both sides

of equation (40), one has

=KG 1

2
aij,kk Õ 2qeikmamj,k H+

1

2
eaEiEj . (36)

cnj
qni

qt
=hinj+gninj . (46 a)

On the other hand, if one makes use of the vector
Exchanging a couple of indices, i and j, in the aboveexpression for the elastic free energy equations (12) and
expression, one readily obtains(13), within the constraint on the director ni instead of

equations (15) to (17),
cni

qnj

qt
=hjni+gninj . (46 b)nini=1. (37)

Then the functional Pn{ni , nij} may be introduced in
From equations (46 a) and (46 b), one readily ® ndsthe same manner as equaton (19), i.e.

ca
qaij

qt
=

1

2
(hinj+hjni)+gaij . (47)Pn{ni , ni,j}=F{ni , ni,j} Õ

1

2
gnini, (38)

Thus one ® nds
PÃ n{ni , ni,j}=PV

dr Pn{ni, ni,j}, (39)

ca
qaij

qt
=h(ij)+naij+l ijwhere g is the Lagrange multiplier corresponding to

equation (37) [17].
Hence one has the following TDGL equation. =

1

2
(nihj+njhi)+gaij . (48)

c
qni

qt
=Õ

dPÃ n

dni
=hi+gni , (40)

Hence we have the following relation between hi and
hij ,where c is the Leslie viscosity coe� cient [7], and the

molecular ® eld hi is de® ned by 1

2
(hinj+hjni)=h(ij)+l ij+ (n Õ g)aij

hi=Õ
dFÃ

dni
=Õ qF

qni
+A qF

qni,jB,j
. (41)

=h(ij)+n0 (dij Õ aij)+(n0+n1 Õ g)aij

For one constant approximation concerned with the =h(ij)+n0dij+ (n1 Õ g)aij . (49 a)
elastic constants, one has the following molecular ® eld.

The above identity implies that there exist uncertainties
hi=Kni,kk+2Kqeijknk,j+eaEiEjnj both parallel to aij ( (n Õ g)aij term in equation (49 a) )

and perpendicular to it (l ij term in equation (49 a) )=K(nmaim,k),k+2Kqeijknmakm,j+eaEiEjnj

concerning the relation between the tensorial molecular=K(npamp,kaim,k+nmaim,kk)
® eld, h(ij) , and the vector ® eld, hi, through ni. Now
multiplying by nj on both sides of equation (49 a) and+2Kqeijknmakm,j+eaEiEjnj . (42)
noting that l ijnj=0, one readily derives

From equation (40), the unknown g has to be determined
by hi=2njh(ij)+2(n Õ g)ni Õ njhjni

g=Õ nihi . (43) =2njh(ij)+2(n Õ g)ni+gni

From comparison between equations (34) and (40), =2njh(ij)+ (2n Õ g)ni, (49 b)
one ® nds the following relations on the viscosity

which coincides with equation (45) previously derived.coe� cients and the Lagrange multipliers.
To end this section, it seems instructive to note that

c=2ca , (44)
one may derive the tensor expression for dynamics from
the vector expression and vice versa, taking account ofhi+gni=2(njh(ij)+nni). (45)
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566 M. Nakagawa

appropriate Lagrange multipliers concerned with the may readily derive,
constraints on the ® eld.

ca
qaij

qt
=hij Õ A ² aij . (58)

3. Discussion

In this work, we have examined the relation between Then, making use of the constraint on aij expressed by
the director and the tensor expressions for nemato-

Tr{a2}=1, (59)dynamics. A similar argument had been reported by
Kilian and Hess [18] and recently by Sonnet et al. [19]. we have the following relation from equation (50),
Ignoring the previously noted constraints for the tensor

A ² =aijhij . (60)order parameter
At ® rst sight, one may see that this relation may resemble
equation (35) for the Lagrange multiplier n. HoweverQijC=

3

2
SAaij Õ

dij

3 BD it has to be borne in mind that the left-hand side of
equation (60) is to be determined by the invariant scalars,or aij , they had proposed the following tensorial
which are independent of the elastic deformations involvedexpression instead of equation (23) [18],
in equation (56), whereas the right-hand side comes
from the elastic property of nematics and the couplingca

qaij

qt
=hij+Wij , (50)

energy with the external ® elds (see equations (12) and
(13)). Therefore equation (60) can no longer be satis® edwhere Wij , is de® ned by [16]
in general if one does not take account of the Lagrange
multipliers introduced in the present approach, i.e. n0Wij=Õ

dF0

daij
; (51)

and n1 in equation (25 a). They also claimed that since
A ² (T )=0 around an equilibrium point, one may ignore

here F0 is the isotropic part of the free energy expanded Wij in the dynamic equation (50) [18]. In practice they
phenomenologically up to the fourth-order in aij as [4] introduced the following simpli® ed form as the basic

dynamic equation instead of equation (50) [19].
F0=

A(T )

2
S2Tr{a2 )+

B

3
S3Tr{a3}+

C

4
S4Tr{a4}

ca
qaij

qt
=hij . (61)

=
A(T )

2
S2 +

B

3
S3+

C

4
S4, (52)

From this one has the following constraint for aij and
hij to satisfy equation (61),with

aij hij=0, (62)A(T )=A0 (T Õ Tc) (A0>0), (53)
which implies orthogonality between aij and hij . InB<0, (54)
general, however, this relation cannot be the case for a

C>0, (55) general expression of the molecular ® eld de® ned by
equation (24).where Tc is a critical temperature related to the nematic±

In conclusion we have to note that the Lagrangeisotropic phase transition [4, 5]. Hence we have the
multipliers must be involved as in equation (23) so as tofollowing relation
investigate the dynamics in the tensorial form. Especially,
without n=n0+n1 related to g in equation (45), we canWij=Õ

dF0

daij no longer derive the vector form from the tensorial one
with some reduction of the tensors, since g has somehow=Õ {A(T )Saij+BS2 (a2 )ij+CS3 (a3)ij} to be related to n as given in equation (49 a).

=Õ {A(T )S+BS2+CS3}aij
4. Conclusions

=Õ A ² (T )aij , (56) In this paper we have proposed a TDGL equation of
nematodynamics in a tensorial form, which is consistentwhere we de® ned A ² (T ) as follows:
with the constraints for the tensor aij as given in

A ² (T )=A(T )S+BS2+CS3. (57) equations (15) to (17), taking certain Lagrange multi-
pliers into account. It has been found that the LagrangeFrom the above relation, the temperature dependence

of the microscopic order parameter S can be determined multipliers are required to support the relation between
the tensorial and vector approaches. In addition we haveby the minimized free energy which corresponds to a

certain global minimum of F0 at a given T . Then one presented an explicit tensorial expression for the Frank
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elastic free energy with three independent elastic
constants on the basis of an extended second-order akQij,kaicj=

3

2
Sak (aiaj,k+ai,kaj )aicj

expansion in terms of Qij,k as de® ned by equation (2).
Therein it should be noted that such degeneracy between

=
3

2
Sakaj,kcj . (A6)the splay and the bend elastic constants as presented

in previous works [4, 5] can be removed within the
second-order expansion of aij,k or Qij,k by including the Also the following vector formulae are available:
orthogonal basis a Õ b Õ c into the tensorial expansion

ai,i=ai,jdi,jcoe� cients Kijkmnp (a, b, c) and Dijk (a, b, c) in equation (1)
in a similar manner to that in previous work related to =ai,j(aiaj+bibj+cicj )
biaxial cholesterics and smectics [10± 13]. In such an

=ai,j(bibj+cicj )extended approach, all elastic coe� cients, Ki (i=splay,
twist, bend), for uniaxial nematics are proportional to =bjai,jbi+cjai,jcj , (A7)
S2, whereas they involved a third-order contribution

aieijkak,j= (bjck Õ cjbk)ak,jproportional to S3 which removes the degeneracy
between KSplay and KBend in the Berreman and Meiboom =bjak,jck Õ cjak,jbk , (A8)approach [16].

As a future problem it seems to be worthwhile to ajai,jakai,k=ajai,jakam,kdim

apply the presently derived TDGL equation in the =ajai,jakam,k (aiam+bibm+cicm)
generalized tensorial form to practical applications of
nematodynamics. In addition the ¯ ow e� ect, which was =ajai,jakam,k(bibm+cicm)

completely ignored at the present stage, is considered to =ajai,jbiakam,kbm+ajai,jciakam,kcmbe another challenge to be investigated in the future.
= (ajai,jbi)

2+ (ajai,jci)
2. (A9)

Appendix

From equations (A2) to (A9) one readily ® nds equationsFirst, we have to note the following relations:
(4) and (5).

bkQij,kaibj=
3

2
Sbk (aiaj,k+ai,kaj)aibj
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